Maps between Non-commutative Spaces

نویسنده

  • S. PAUL SMITH
چکیده

Let J be a graded ideal in a not necessarily commutative graded k-algebra A = A0⊕A1⊕· · · in which dimk Ai <∞ for all i. We show that the map A→ A/J induces a closed immersion i : Projnc A/J → Projnc A between the non-commutative projective spaces with homogeneous coordinate rings A and A/J . We also examine two other kinds of maps between non-commutative spaces. First, a homomorphism φ : A → B between not necessarily commutative N-graded rings induces an affine map Projnc B ⊃ U → Projnc A from a non-empty open subspace U ⊂ Projnc B. Second, if A is a right noetherian connected graded algebra (not necessarily generated in degree one), and A(n) is a Veronese subalgebra of A, there is a map Projnc A → Projnc A(n); we identify open subspaces on which this map is an isomorphism. Applying these general results when A is (a quotient of) a weighted polynomial ring produces a non-commutative resolution of (a closed subscheme of) a weighted projective space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Some Operator Ideals in Non-commutative Functional Analysis

We characterize classes of linear maps between operator spaces E, F which factorize through maps arising in a natural manner via the Pisier vector-valued non-commutative L spaces Sp[E ∗] based on the Schatten classes on the separable Hilbert space l. These classes of maps can be viewed as quasi-normed operator ideals in the category of operator spaces, that is in noncommutative (quantized) func...

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000